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ABSTRACT 
 
Soil moisture and vegetation optical depth (VOD; related to 
vegetation water content) retrieved from SMAP and SMOS 
satellites are widely used for a range of hydrosphere and 
biosphere applications. However, while soil moisture has 
been globally well-validated, VOD validation has been 
sparse. Furthermore, simultaneous retrieval of these 
parameters results in uncertainties both individually in soil 
moisture and VOD retrievals as well as in compensation 
between the parameters. Here, we show global locations 
where soil moisture and VOD retrievals will have lower 
uncertainty, based on complementary brightness temperature 
information content and signal-to-noise ratio metrics. In these 
same locations, we show that error propagates more into 
VOD. However, using VOD regularization algorithms, this 
error is greatly reduced, especially at sub-weekly timescales 
where algorithmic error can be most apparent. Despite these 
regularization approaches that reduce errors, there are yet 
vast differences in available global regularized retrievals 
originating from different algorithmic choices.  
 

Index Terms— Passive microwave radiometry, SMAP, 
vegetation optical depth, soil moisture, uncertainty 
 

1. INTRODUCTION 
 
Soil moisture and vegetation optical depth (VOD) obtained 
from passive microwave remote sensing missions are 
increasingly being used as an observational constraint on land 
surface hydrology and ecosystem science. However, while 
soil moisture has been validated across established global in-
situ sites, a similar scale VOD validation has yet to be 
attempted. This is despite an increased use of VOD in 
ecosystem sciences as well as evidence that VOD strongly 
influences soil moisture retrievals [1]. With only sparse VOD 
validations being attempted [2], it is necessary to establish 
holistic metrics that detect and quantify error propagation of 
satellite measurement errors into soil moisture and VOD 
algorithmic retrieval error. Additionally, approaches that 
reduce error in VOD have been developed under a common 
theme of regularization, or imposing a priori information 

about VOD in the algorithm [3]. However, the retrieval error 
reduction  from these regularization approaches has only 
recently began to be quantified [1], [4] and differences 
between regularization approaches remain to be investigated.  

Here, our objectives are to (i) establish holistic 
metrics that evaluate how confidently soil moisture and VOD 
can be simultaneously retrieved from a pair of brightness 
temperature measurements as well as (ii) estimate and 
evaluate retrieval uncertainty reduction using regularization. 
 

2. UNCERTAINTY METRICS 
 
We evaluate two metrics that inform how well passive 
microwave retrieval algorithms can simultaneously retrieve 
soil moisture and VOD using the tau-omega model. We use 
SMAP L1C brightness temperature (TB) at 9km resolution 
that produce official SMAP soil moisture products. 
  First, the degrees of information (DOI) is computed: 

!"# = % − '! (1) 
where N is the number of measurements and cn is their total 
normalized correlation [5]. When there is more shared 
information between the measurements, cn increases, 
indicating less independent information to retrieve unknown 
parameters. When considering polarized TB measurement 
pairs, the DOI estimates an upper bound on how many 
unknown parameters can be retrieved with these two 
measurements. Values below two indicate that, due to 
correlated TB measurement pairs, both soil moisture and 
VOD cannot be simultaneously retrieved without estimation 
instabilities that amplify retrieval error.  

Fig. 1A shows the global spatial pattern of DOI 
where most locations are well below 2 and near 1.5. The 
values curiously approach 2 in forested regions, suggesting 
less retrieval uncertainty. This is despite it being well known 
that soil moisture retrieval errors are greatest under dense 
vegetation because of a reduced detection of soil emission as 
well as neglect of multiple scattering in the radiative transfer 
equation. As such, DOI’s intended use breaks down in these 
locations. This issue arises because DOI can undesirably 
approach 2 in cases where both measurements are dominated 
by random, independent noise [6]. This can occur in forests 



where the TBH and TBV difference is dominated by random 
noise, instead of the desired, natural polarization differences 
that delineate soil from vegetation signals. Therefore, a 
separate metric is required that detects this desired TBH and 
TBV difference.  

Namely, the signal-to-noise ratio (SNR) achieves 
this aim complementary to DOI as computed by: 
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Here, s(+) is the standard deviation of L, the distance of a 
given TBH and TBV measurement pair from their 1:1 line. As 
such, L is a measure of signal in measuring the difference 
between TBH and TBV. TB polarizations ultimately need to 
differ to a large enough degree to confidently partition soil 
and vegetation signals. The Noise Equivalent Delta 

Temperature (NEDT) represents measurement error in the 
SMAP L1C TBs which are approximately 1K. 
 Most low-to-moderately vegetated regions of the 
globe have SNR well above 2 indicating a high potential to 
confidently partition soil and vegetation signals from the 
available observations (Fig 1B). It also shows SNR 
approaching 1 in forested regions where DOI is high. This 
indicates that TBH and TBV differences are dominated by 
random noise rather than physically meaningful differences 
needed to disentangle soil and vegetation signals.  
Nevertheless, SNR alone is misleading because while it is 
high in semi-arid locations, DOI indicates that more 
information beyond the TBH and TBV pair at a location is 
needed to confidently retrieve soil moisture and VOD. 
 Ultimately, these complementary metrics reveal that 
there are no instances where both conditions are met with 
DOI being near 2 and SNR being above 2 (Fig. 1). Retrievals 
of soil moisture and VOD will thus have amplified error due 
to retrieval instability if using a simultaneous retrieval 
approach (i.e., DCA, LPRM).  
 However, increasing the DOI through regularization 
(as in the MT-DCA; see Section 3) would allow for higher 
confidence in retrieval stability, especially for VOD across 
light-to-medium vegetated regions across the globe (Fig. 2). 
 To inform the regularization approaches needed as 
suggested in Figs. 1 and 2, it is key to determine how the 
amplified error in a simultaneous retrieval approach 
propagates into soil moisture and VOD. We use the 
difference of the individual soil moisture (SM) and VOD 
SNR: 
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where values greater than zero indicate that error is 
propagating more into VOD than soil moisture. The SM and 
VOD errors are determined numerically by computing the 
error covariance matrix of the cost function at each pair of 
soil moisture and VOD as shown in [4]. The SM and VOD 
signals are estimated by determining the sub-seasonal 
standard deviation of retrieved SM and VOD. 
 Based on Eq. 3, error tends to propagate more into 
VOD than soil moisture across the globe (Fig. 3). It does so 
to such a degree that the VOD signal would need to be a factor 

 
Figure 1. (A) Degrees of information. (B) Signal to noise 

ratio. Based on SMAP L1C brightness temperature 
measurements. 

                
Figure 2. Locations where joint soil moisture and VOD retrievals have low uncertainty with regularization (dark green: 

higher confidence; light green: medium confidence). Right: Areal percent of conditions met with latitude.   

 



of two to four times higher for error to instead propagate into 
soil moisture. This may occur because of the tendency for 
error variability to move along the VOD axis in the cost 
function space [3].  
 

3. RETRIEVAL USING REGULARIZATION  
 
Ultimately, given a tendency for error to propagate into VOD 
and that DOI is not high enough to robustly retrieve both soil 
moisture and VOD with two TB measurements, an error 
mitigation approach is accordingly needed in the retrieval 
algorithm. A common approach is using regularization, or 
solving an underdetermined problem by imposing a priori 
information about SM and/or VOD in the retrieval algorithm. 
Given that error propagates more into VOD (Fig. 3) and that 
it is a viable assumption that VOD variations are slower than 
soil moisture in time with the influence of dry biomass 
changes [7], passive microwave retrieval algorithms stabilize 
retrievals by making assumptions that slow VOD in time. 
Namely, the multi-temporal dual channel algorithm (MT-
DCA) slows VOD using a discrete time-window approach 
imposing constrains on its rate of change between overpasses 
[3]. The SMAP modified dual channel algorithm (referred to 
here as MDCA, but officially named DCA) now similarly 
uses a Tikhonov regularization approach that slows VOD 
variations by imposing constraints on VOD deviations from 
MODIS NDVI climatology. 
 We simulate “true” (or perfectly known) soil 
moisture and VOD time series as in ref. [4] that resemble 
retrieved SM and VOD. These values were input into the tau-
omega model to generate true, TB time series. Random, 
normally distributed TB error on the order of that observed 

(i.e., N(0, 1.1K)) was added. Both MT-DCA (regularized) 
and traditional simultaneous DCA (non-regularized) were 
used to retrieve SM and VOD from these noisy simulated TB 
time series to (a) quantify the propagation of error in 
comparing to the “true,” simulated SM and VOD time series 
as well as (b) determine the error reduction caused by 
regularization. Both algorithms used the same input 
parameters to isolate only the effect of regularization. 
 Soil moisture and VOD errors increase with mean 
VOD (Fig. 4A), as expected from uncertainty metrics in Fig. 
1. However, regularization reduces these errors, especially 
more in VOD as expected from Fig. 3. VOD RMSE is 
reduced by 36% on average and soil moisture RMSE reduced 
by 22% on average. Regularization slows VOD variations in 
time, which one may expect would reduce VOD 
correspondence to truth at sub-weekly timescales. However, 
we show here that it increases VOD’s correlation with the 
truth at these short timescales, as well as for soil moisutre 

 

 
Fig. 4. Regularization reduces both soil moisture and VOD 
errors, especially for their high frequency components (<10 
day periods). (A) Root mean square error of soil moisture 
and VOD. (B) Correlation between simulated noisy time 
series and truth for soil moisture and VOD for their high 
frequency components (<10 day periods). Error bars show 
95% confidence interval. Computed given a 1.1K TB error 
standard deviation and average soil moisture of 0.2 m3 m-3. 
Reproduced with permission from ref [4]. 
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Fig. 3. Degree of error propagation into VOD relative to soil 
moisture. Estimate of the SNR difference in Eq. 3 using 
SMAP satellite retrievals where each global 36 km land 
pixel includes a value plotted on this joint density. Black 
contours show the joint density of SMAP time-mean values 
of soil moisture and VOD across the globe. Reproduced 
with permission from ref [4]. 
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(Fig. 4B). This indicates the benefit of regularization in 
reducing error within the algorithm and mitigating the 
underdetermined problem posed in Fig. 1. As such, SM and 
VOD variations produced from regularization have an 
improved capability in understanding global, sub-weekly 
soil-plant moisture dynamics [8]. We found that these results 
similarly hold using a similar Sobolev-norm regularization 
approach. However, such simulations have yet to be 
performed on the SMAP MDCA’s Tikhonov regularization. 
While we expect similar results, the error reduction will 
additionally be function of the input VOD a priori variations. 
 We finally highlight that while regularization is 
known to confer error reduction benefits to both SM and 
VOD, the retrieved dynamics can differ when using different 
regularization assumptions. Figure 5 shows that soil 
moisture-VOD coupling at sub-weekly timescales can be 
vastly different across the globe. The MT-DCA uses a naïve 
retrieval approach that assumes slower VOD dynamics, but 
does not explicitly impose their functional form. Conversely, 
the MDCA Tikhonov approach inputs an a priori VOD time 
series. It is important to ultimately rectify whether the 
differences in Fig. 5 arise from differing constraints in 
altering the degree of regularization or from the functional 
form of the input a priori VOD in the MDCA. Ultimately, the 
appearance of negative SM-VOD correlations in global semi-
arid regions in both products suggests that error is being 
mitigated and natural dynamics are emerging. Positive 
correlations instead may indicate the presence of erroneous 
compensation within the algorithm as appears in traditional 
simultaneous DCA retrievals [4].  
 

4. CONCLUSION 
 

Here, we find that the signal to noise ratio and degrees of 
information metrics show that low to moderately vegetated 
areas of the globe are most robust to retrieval error. However, 
some degree of regularization is needed to stabilize retrievals, 
especially with error propagating more into VOD than soil 
moisture. Ultimately, regularization reduces both soil 
moisture and VOD errors, especially at sub-weekly 
timescales. Nevertheless, available soil moisture and VOD 
products that implement regularization show differences in 
retrievals, the origins of which require investigation. 
 

5. REFERENCES 
[1] S. Zwieback, D. D. Bosch, M. H. Cosh, P. J. Starks, 

and A. Berg, “Vegetation–soil moisture coupling 
metrics from dual-polarization microwave 
radiometry using regularization,” Remote Sens. 
Environ., vol. 231, no. March, p. 111257, 2019. 

[2] N. Holtzman et al., “L-band vegetation optical depth 
as an indicator of plant water potential in a 
temperate deciduous forest stand,” Biogeosciences, 
vol. 18, pp. 739–753, 2021. 

[3] A. G. Konings, M. Piles, K. Rotzer, K. A. McColl, 
S. K. Chan, and D. Entekhabi, “Vegetation optical 
depth and scattering albedo retrieval using time 
series of dual-polarized L-band radiometer 
observations,” Remote Sens. Environ., vol. 172, pp. 
178–189, 2016. 

[4] A. F. Feldman, D. Chaparro, and D. Entekhabi, 
“Error Propagation in Microwave Soil Moisture and 
Vegetation Optical Depth Retrievals,” IEEE J. Sel. 
Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 
11311–11323, 2021. 

[5] A. G. Konings, K. A. McColl, M. Piles, and D. 
Entekhabi, “How many parameters can be 
maximally estimated from a set of measurements?,” 
IEEE Geosci. Remote Sens. Lett., vol. 12, no. 5, pp. 
1081–1085, 2015. 

[6] D. Entekhabi and A. F. Feldman, “Evaluating 
Brightness Temperature Information For Estimating 
Microwave Land Surface And Vegetation 
Proporties,” Int. Geosci. Remote Sens. Symp., pp. 
5374–5377, 2019. 

[7] A. G. Konings, K. Rao, and S. C. Steele-Dunne, 
“Macro to micro: microwave remote sensing of 
plant water content for physiology and ecology,” 
New Phytol., vol. 223, no. 3, pp. 1166–1172, 2019. 

[8] A. F. Feldman et al., “Moisture pulse-reserve in the 
soil-plant continuum observed across biomes,” Nat. 
Plants, vol. 4, no. 12, pp. 1026–1033, 2018. 

 
Figure 5. Correlation between soil moisture and VOD for 
their high frequency components (<10-day periods) using 
regularization algorithms: (A) SMAP MT-DCA. (B) SMAP 
MDCA. 

 


